Sign in →

Test Code IGFMS Insulin-Like Growth Factor-1, Mass Spectrometry, Serum

Useful For

Evaluation of growth disorders

 

Evaluation of growth hormone deficiency or excess in children and adults

 

Monitoring of recombinant human growth hormone treatment

 

Follow-up of individuals with acromegaly and gigantism

Method Name

Liquid Chromatography Mass Spectrometry (LC/MS)

Reporting Name

IGF-1, LC/MS, S

Specimen Type

Serum


Necessary Information


Indicate patient's age and sex.



Specimen Required


Collection Container/Tube:

Preferred: Red top

Acceptable: Serum gel

Submission Container/Tube: Plastic vial

Specimen Volume: 0.5 mL

Collection Instructions: Centrifuge and aliquot serum into a plastic vial.


Specimen Minimum Volume

0.3 mL

Specimen Stability Information

Specimen Type Temperature Time Special Container
Serum Frozen (preferred) 28 days
  Ambient  72 hours
  Refrigerated  72 hours

Reject Due To

Gross hemolysis Reject
Gross lipemia OK
Gross icterus OK

Clinical Information

Insulin-like growth factor 1 (IGF1) is a 70-amino acid polypeptide (molecular weight 7.6 kDa; Uniprot Accession P05019 [aa 49-118]). IGF1 is a member of a family of closely related growth factors with high homology to insulin that signal through a corresponding group of highly homologous tyrosine kinase receptors. IGF1 is produced by many tissues, with the liver being the main source of circulating IGF1. IGF1 is the major mediator of the anabolic and growth-promoting effects of growth hormone (GH). IGF1 is transported by IGF-binding proteins, in particular IGF-binding protein 3 (IGFBP3), which also controls its bioavailability and half-life. Noncomplexed IGF1 and IGFBP3 have short half-lives (t1/2) of 10 minutes and 30 to 90 minutes, respectively, while the IGFBP3/IGF1 complex is cleared with a much slower t1/2 of 12 hours.

 

The secretion patterns of IGF1 and IGFBP3 mimic each other, their respective syntheses being controlled by GH. Unlike GH secretion, which is pulsatile and demonstrates significant diurnal variation, IGF1 and IGFBP3 levels show only minor fluctuations. IGF1 and IGFBP3 serum levels, therefore, represent a stable and integrated measurement of GH production and tissue effect.

 

Low IGF1 and IGFBP3 levels are observed in GH deficiency or GH resistance. If acquired in childhood, these conditions result in short stature.

 

Childhood GH deficiency can be an isolated abnormality or associated with deficiencies of other pituitary hormones. Some of the latter cases may be due to pituitary or hypothalamic tumors or result from either cranial radiation or intrathecal chemotherapy for childhood malignancies.

 

Most GH resistance in childhood is mild-to-moderate, with causes ranging from poor nutrition to severe systemic illness (eg, kidney failure). These individuals may have IGF1 and IGFBP3 levels within the reference range. Severe childhood GH resistance is rare and usually due to defects of the GH-receptor, its downstream signaling cascades, or deleterious variants in IGF1, its binding proteins, or its receptor signaling cascades.

 

Both GH deficiency and mild-to-moderate GH resistance can be treated with recombinant human GH (rhGH) injections, while severe resistance will usually not respond to GH. However, such patients might respond to recombinant IGF1 therapy, unless the underlying defect is in the IGF1 receptor or its downstream signaling systems.

 

The exact prevalence and causes of adult GH resistance are uncertain, but adult GH deficiency is seen mainly in patients with pituitary tumors. It is associated with decreased muscle bulk and increased cardiovascular morbidity and mortality, but replacement therapy remains controversial.

 

Elevated serum IGF1 and IGFBP3 levels often indicate either a sustained overproduction of GH or excessive rhGH therapy. Endogenous GH excess is caused mostly by GH-secreting pituitary adenomas, resulting in gigantism if acquired before epiphyseal closure and in acromegaly thereafter. Both conditions are associated with generalized organomegaly, hypertension, diabetes, cardiomyopathy, osteoarthritis, compression neuropathies, a mild increase in cancer risk (breast, colon, prostate, lung), and diminished longevity. It is plausible, but unproven, that long-term rhGH overtreatment may result in similar adverse outcomes.

 

Malnutrition results in low serum IGF1 concentrations, which recover with restoration of adequate nutrition.

Cautions

Insulin-like growth factor 1 (IGF1) and insulin-like growth factor-binding protein 3 (IGFBP3) reference values are highly age dependent, and results must always be interpreted within the context of the patient's age.

 

During normal pregnancy, serum IGF1 increases, on average, almost 2-fold (range approximately 1.1-fold to approximately 4-fold) over prepregnancy baseline concentrations; however, reference values for this population have not been formally established at our institution.

 

Discrepant IGF1 and IGFBP3 results can sometimes occur due to liver and kidney disease; however, this is uncommon. Such results should alert laboratories and physicians to the possible occurrence of a preanalytical or analytical error.

 

Currently, IGF1 or IGFBP3cannot be reliably used as risk indicators or prognostic markers in breast, colon, prostate, or lung cancer.

 

IGF1 assays exhibit significant variability among platforms and manufacturers. Direct comparison of results obtained by different assays is problematic. If IGF1 and IGFBP3 are being used for serial monitoring, reestablishment of the patient's baseline levels is preferred if assays are changed.

 

Several amino-acid benign alterations within IGF1 have been discovered. At least 4 of these are known to result in IGF1 isoforms with diminished biological activity. IGF1 immunoassays vary in their ability to detect these reduced-function variants. Detection of the variant proteins may result in an overestimation of functionally active IGF1 in an affected patient. By contrast, mass spectrometry (MS)-based IGF1 assay can usually selectively detect the active IGF1 isoforms. However, there might be as yet unknown functionally different variants of IGF1, which even MS cannot distinguish from wildtype (normal) IGF1.

Day(s) Performed

Monday through Sunday

Results reported: Monday through Friday

Report Available

3 to 6 days

Performing Laboratory

Mayo Clinic Laboratories in Rochester

Test Classification

This test was developed and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. It has not been cleared or approved by the US Food and Drug Administration.

CPT Code Information

84305

LOINC Code Information

Test ID Test Order Name Order LOINC Value
IGFMS IGF-1, LC/MS, S 2484-4

 

Result ID Test Result Name Result LOINC Value
62750 IGF-1, LC/MS, S 2484-4
35781 Z-score 73561-3

Specimen Retention Time

3 months

Forms

If not ordering electronically, complete, print, and send a General Request (T239) with the specimen.